
CSC2547: Topics in Statistical Learning Theory Winter 2019

Project Report: Investigating Generalization in Neural Networks
Hitarth Choubisa Collaborators:

1. Overview:

Despite the fact that Neural Networks (NNs) often have parameters much more in number than the
number of datapoints, we find that these NNs are able to perform well on the testing dataset - this is called
generalization. It is a question of wide interest to figure out what makes some models generalize better
than the others. In this report, I wish to explore generalization in NNs, which method is likely to improve
the ability to generalize, learning capacity of NNs and if the ability of generalization is specific to NNs
alone.

2. Generalization & methods:

Learning the patterns is what gives NNs the ability to generalize on test dataset. However, a recent study
[3] questions this understanding of NNs. They took candidate architectures and trained them both on the
true data and a copy of the data in which true labels were replaced by random labels. In second case, there
is no longer any relationship between the inputs and the labels. However contrary to the expectation, NNs
were able to easily fit the random labels as well; this implies that effective capacity of NNs is sufficient for
memorizing the entire dataset. Even training time increases only by a constant factor in case of randomized
labels as compared to original dataset. This makes us wonder if we can quantify expressive power of a
neural network of which the proof is in [3]:

Theorem 1. There exists a two-layer neural network with ReLU activations and 2n+d weights that can
represent any function on a sample of size n in d dimensions.

Traditional complexity measures, in particular Rademacher complexity doesn’t seem to give an insight-
ful bound on generalization errors either. Rademacher complexity is defined as:

Rn(H) = Eσ[sup
h∈H

1

n

n∑
i=1

σih(xi)]

where H is the hypothesis class on a dataset {x1, ..., xn} and {σ1, .., σn} ∈ {+1/ − 1} are iid uniform
random variables. Since the randomization tests indicate that many NNs fit the training set with random
labels, we expect Rn(H) ≈ 1. This is, of course, a trivial upper bound on the Rademacher complexity and
doesn’t lead to useful generalization bounds.
Regularization is the standard tool to mitigate overfitting in NNs. Idea is that using regularization, we can
confine the hypothesis space to a manageable complexity; therby reducing the Rademacher Complexity and
obtaining better bounds on generalization errors. A few common methods of explicit regularization include
dropout, weights decay and data augmentation. Experiments conducted in [3] indicate that despite the
presence of the above-mentioned regularizers, both Inception & MLPs still fit the random training dataset.
A separate experiment to compare results of the networks on true data by turning the regularizers ON and
OFF suggested that the results don’t vary too much.

The observations clearly indicate that we need a better tool for understanding generalization and a tool
that is likely to enable the users to ensure generalization. Thus, comes the concept of Bayesian Evidence!
Specifically, I will explore the Bayesian Approach (inspiration from [2]) which will enable us to explain
these observations, in simple cases enable us to choose a model that generalizes well and will also explore
how SGD tend to find minimas which generalize well.

3. Bayesian Approach
In this section, we will try to explain the observation of generalization and memorization using Bayesian
evidence. The Bayesian way of comparing two models M1 and M2 is to observe the following ratio,

P (M1|y, x)

P (M2|y, x)
=
P (y|x;M1) · P (M1)

P (y|x;M2) · P (M2)

The second factor on the right is the prior ratio which we usually set to 1 to avoid unnecessary subjectivity.

The first factor is of crucial importance and is called evidence ratio which controls how much the training
data changes our prior beliefs,

P (y|x;M) =

∫
dwP (y|w, x;M)P (w;M) =

√
λ

2π

∫
e−C(w;M)dw

where w are the model parameters and

P (y|w, x;M) · P (w;M) =
∏
i

P (yi|w, xi;M) ·
√

λ

2π
e−λw

2/2 = e−H(w;M) ·
√

λ

2π
e−λw

2/2 ∝
√

λ

2π
e−C(w;M)

where C(w;M) = H(w;M) + λw2/2 = −
∑
i ln(P (yi|w, xi;M)) + λw2/2.

We call C(w;M) as cost function or a L2 regularized cross entropy. Also, since evidence is calculated by
integrating over the model parameters, it is invariant to model parameterization.

Till now we have considered model with a single parameter. But in realistic scenario, we have mulit-
ple parameters and in that case, we can use Taylor expansion to get the following: Let w0 be the point of
minima of the cost function. Using Taylor expansion of the cost function C(w;M) around w0, we have,

P (y|x;M) ≈ λp/2e−C(w0)/|∇∇C(w)|1/2w0

where |∇∇C(w)| is the determinant of the Hessian and p denotes the number of model parameters. The

term λp/2/|∇∇C(w)|1/2w0 is also called Occam factor. Since the determinant of the Hessian is simply product
of its eigenvalues(λi’s), the above expression simplified to,

P (y|x;M) ≈ exp

{
−C(w0)− 1

2

p∑
i=1

ln(λi/λ)

}
We compare it against a model which assumes the labels are assigned randomly; evidence for such a model
is independent of w and is give by, P (y|x;NULL) = (1/n)N = e−Nln(n) where n denotes the number of
model classes and N the number of training labels. The evidence ratio then becomes,

P (y|x;M)

P (y|x;NULL)
= e−E(w0)

where E(w0) = C(w0) + (1/2)
∑
i ln(λi/λ) −Nln(n), where E(w0) is also called log-evidence ratio in

favor of NULL model. We would prefer model M only if E(w0) < 0. The evidence, as derived above having
a curvature factor in it, also supports the intuition that broad minima generalize better than sharp minima
since the curvature term (determinant of Hessian) will be smaller for broad minima.

[2] conducted a series of experiments to show how evidence ratio indeed indicates the level of general-
ization. Since, the neural networks’ parameters are very large in number, it becomes close to impossible
to track its Hessian matrix. So, instead they targeted Logistic Regression for verifying the relationship
between generalization and Bayesian evidence for a couple of reasons: first, Logistic regression behaves
similarly to neural networks in terms of memorizing and learning behavior; secondly, the number of pa-
rameters in logistic regression is tractable. Their experiment results in Figure 1 show a clear correlation
between Test cross-entropy and log evidence ratio. Having a low value of E(w0) (in case of informative
labels) correlates with low values of test error (better generalization) and a large positive value of evidence
correlates with poor generalization (in case of random labels). In both the cases, however, the training
error is low indicating that in case (a), we have memorizing and in case (b), we achieve learning. Thus,
the Bayesian evidence approach described here explains the observations made by [3] as to when the model
generalizes and when it memorizes.

Figure 1: Figure (a) represent the behavior in case of randomized labels. Figure (b) represents the behavior
in case of informative labels

4. Noise Level and Evidence
Let’s suppose that the log term of the eigenvalues in the evidence is dominated by the maximum eigenvalue
of the Hessian. We would expect models to not generalize well in case of noisy inputs. Thus, the two factors
- amount of noise and the maximum eigenvalue of Hessian should be correlated. Thus, this little analysis
will not only enable us to verify the claims but also gives us a way to identify the noise levels in the input.
It has been indeed been shown by [1] that maximum eigenvalue of the Hessian matrix increases as noise
levels increase. Thus, using Bayesian evidence as a tool, we can predict about the generalization nature of
the model.

5. Stochastic Gradient Descent(SGD) and Bayesian Evidence

The ”Occam factor” (λp/2/|∇∇C(w)|1/2w0) in the Bayesian evidence penalizes sharp minima and hence,
model with sharp minima is unlikely to generalize well. Mini-batch noise in SGD drives SGD to find a
broader minima resulting in a better evidence. [2] modelled the SGD via stochastic differential equation
which was then used to obtain SGD noise scale(g) as, g ≈ εN

B where N is the number of data-samples, B
is the batch size and ε is the learning rate. Since the gradient drives the SGD towards deep minima, while
noise drives SGD towards broad minima, we expect the test set performance to show peak at an optimal
batch size, which balances these competing contributions to the evidence. Thus, the above rule allows us
to increase the learning rate, by varying the batch size and at the same time, keeping the generalization
error the same. The fact that Bopt ∝ N (fixing the noise level which is optimal) also enables to us put
the machine learning models in production; progressively increase the batch size as the training set size
increases.

6. Conclusion
In this exploratory report, I have tried to demystify the generalization behavior of learning models. Using
Bayesian evidence as our tool, we can easily figure out when is our model learning and when it is memorizing.
We conducted some experiements to show how we can potentially use evidence as a measure of level of
noise as well. Towards the end, we saw how SGD tends to find broader minimas which generalize well.

References

[1] David Krueger, Nicolas Ballas, and Stainslaw Jastrzebski et al. Deep nets don’t learn via memorization.
2017.

[2] Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient
descent. 2018.

[3] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. 2017.

